邱联鸿:激发数据要素活力 助推新质生产力发展

时间:2024-07-15

数据新型生产要素是新质生产力的重要构成,数据要素发展及其价值释放有利于推动新质生产力发展。要激发数据要素活力,为数字经济时代培育和发展新质生产力注入源源不断的动力。

数据要素作为新质生产力的重要构成,本身对新质生产力发展具有基础支撑作用。随着数据要素快速融入生产、分配、流通、消费和社会服务管理等各个环节,形成了丰富的应用场景,推动人类社会生产方式变革。一方面,数据重塑生产要素体系。数据作为新型生产要素,参与到现有的生产要素体系中,实现了生产要素的更新发展与创新性配置以及生产组合的优化,对新质生产力发展有着基础推动作用。另一方面,数据要素参与生产要素体系愈加深入,数据新型生产要素与传统生产要素的融合必然不断加深。在这一过程中,要素的有机融合与应用必然会突破传统生产的边界,为生产创造新的广阔空间。在新的广阔空间中,无论是新要素还是传统要素,其生产效率与资源配置效率都将实现跃升,为新质生产力发展赋能。

数据要素是赋能产业深度转型升级的核心动能,对新质生产力发展具有创新引擎作用。数据要素与产业发展的深度交融,具象化为数字产业化和产业数字化两个主要方向。于数字产业化而言,充分利用信息技术与经济社会的交汇融合产生的、蕴藏着巨大经济社会价值的海量数据,推动数字经济产业的优化升级,大力发展数字产品制造业、数字产品服务业、数字技术应用业、数字要素驱动业以及数字化效率提升业等,进而以数字新兴产业的发展赋能新质生产力发展。于产业数字化而言,通过对数据要素更充分、更智能、更精细的运用,以信息流带动技术流、资金流、人才流、物资流,有效改进要素比例和配置方式,驱动资源合理有效配置,激发生产要素的内生动力与创新活力,提升生产要素组合效率,赋能传统产业发展提效,推进传统产业的数字化转型,进而以传统产业深度转型升级赋能新质生产力发展。

数据要素具有显著的乘数效应,赋能全要素生产率大幅提升,对新质生产力发展具有重要推动作用。推动新质生产力加快发展,要更大激发数据要素活力与乘数效应。首先,加快推进数据基础建设,激发数据要素内生活力。一方面,要在遵循数据产权、流通、交易、使用、分配、治理、安全等基本规律的基础上,推进数据基础制度建设。一是推进数据产权制度建设,明确完善数据产权结构和明确归属规则,科学厘定数据多元主体的权利和责任,以数据产权制度安排保障数据合规可管可控。二是建立健全数据交易标准以及完善数据流通体系,保障数据参与各方权益,消除经营主体的合规顾虑,进一步释放各参与主体创新活力和内生动力,推动数据流通与交易纵深发展。三是建立完善数据治理体系,理顺数据要素市场的核心利益关系,强化理论研究和制度设计,推进试点应用,探索数据治理实践方案,在实践中形成有利于数据要素发展的治理体系。另一方面,要加快新型基础设施建设。既要立足国内,加强数字基础设施布局,统筹推进网络基础设施、算力基础设施、应用基础设施等建设,大力推进数字基础设施体系化发展和规模化部署;也要面向全球,推动国际数据基础设施互联互通建设,实现数据要素在全球层面的高效流通与使用。

其次,加快推进数据有序开放,激发数据要素发展活力。要高质量推进政务数据有序开放。政务数据是经济社会发展的公共资源,蕴含着丰富的经济社会价值,其有序开放是激发数据要素开放活力的有力支撑。推进政务数据安全有序开放,要坚持以公开为原则,不公开为例外的基本理念,进一步丰富和完善政务数据开放目录,构建统一规范、互联互通、安全可控的政务数据开放平台,推动政务数据的开放共享、开发利用。要推动工业、金融、医疗、教育、科研等重点行业、重点领域数据安全有序开放的实践创新,促进更多高质量的数据面向社会和相关部门开放共享。探索推进行业数据要素接入国家数据共享交换平台,在“数据可用不可见”的安全前提下,开展数据开放共享、开发利用探索,实现数据“用途可控可计量”的规范开发、有效利用,促进数据要素在开放共享中迸发出更大活力、创造出更高价值。

再次,加强数据安全保护,激发数据要素安全活力。一是加强密码技术、访问控制、可信计算等安全技术升级以及对数据基础设施的安全保护,完善基础安全技术层。二是紧密结合数据要素在全产业链中的安全需求进行操作,强化数据采集阶段的数据分类分级、数据源鉴别与记录,传输阶段的加密,存储与处理阶段的脱敏、去标识化,共享流通阶段的隐私计算、数据水印、身份认证等一系列的安全技术并不断升级,完善数据安全技术层。三是建立数据安全事件监测系统,对重要数据生成、传输和访问进行溯源记录,优化数字水印、身份认证等安全技术的场景应用,确保数据在应用系统中得到充分保护,完善数据安全技术应用层。此外,各个层面的安全措施要协同配合,共同筑牢数据安全防护体系,保障数据要素在全产业链中的安全、可靠。

最后,加强数据人才队伍建设,激发数据要素主体活力。一是根据新质生产力发展趋势,优化高等学校学科设置,引入人工智能、大数据与数据科学等相关课程,支持高等教育机构开展专业化、国际化的数据人才培养计划,以专业培养促进数据人才储备的专业化。二是紧密结合国家战略发展需求,设立国家级的数据人才专项选拔和培育计划,吸纳全球高端人才、选拔本土优秀人才,同时,增设数据要素领域科学研究专项经费投入,鼓励、支持数据人才在领域前沿的实践探索。三是建立数据人才交流平台,鼓励数据人才之间的交流与合作,促进相关经验和技术的分享与传播,推动数据领域、数据行业的专业化和标准化发展。

【作者系中共广东省委党校副教授、广东省习近平新时代中国特色社会主义思想研究中心省委党校研究基地特约研究员,本文系广州市哲学社会科学发展“十四五”规划2023年度课题(2023GZGJ141)与广东省委党校一般项目(XYYB202301)的阶段性成果】