11省市调研:各地发展工业大数据的进展与问题

时间:2023-12-01
来源:华制智能

640 (1).png

工业大数据作为工业与数字经济之间的桥梁纽带,对加快工业数字化转型、推进数实融合,支撑新型工业化建设意义重大。为此,赛迪研究院对上海、江苏、浙江、福建、山东、河南、杭州、宁波、厦门、青岛、深圳11个省市及部分行业领域专家开展调研。

调研发现,地方在工业大数据基础设施、标杆示范、集群载体、要素保障方面取得了积极进展,但同时仍面临数据流通不畅、技术产品不强、解决方案不足、惯性思维局限等问题。

PART 1

地方工业大数据发展进展

(一)支撑工业大数据流通的

基础支撑能力基本形成

一是基础设施的建设部署加快推进。各地加大5G、千兆光网等数字基础设施的建设部署,提升工业互联网支撑服务能力。如青岛市建设了工业互联网企业综合服务平台,累计上线特定行业、领域工业互联网平台40个。福州市通过工业互联网平台接入600多家纺织化纤企业。

二是工业数据的采集汇聚不断加强。各地积极实施数据管理能力国家标准,强化数据全生命周期管理和数据资源体系建设。如山东省培育数据共享、数据开放、数据流通、公共服务四类平台共60个,构建工业大数据平台体系。宁波市基于“产业大脑+未来工厂”建设推进产业数据汇聚共享。

三是数据资源的资产化运营加速落地。各地积极培育数据要素市场,打造数据交易中心、数据中介、数据经济人等数据服务新模式。如江苏省、广东省发布首席数据官制度。上海市布局新型数据交易所,推进多层次数据交易流通机制,打造“数商”交易生态。

(二)释放工业大数据价值的

应用标杆示范不断涌现

一是示范应用场景加速涌现。全国过半省市发布数字化场景清单,引导工业领域新业态新模式发展。如湖南、河南、江苏等省发布制造业数字化转型典型应用场景。青岛市搭建场景赋能公共服务平台,累计发布“工业赋能”场景2110个,共4076个企业需求被150家服务商接单。

二是工业企业全流程数据驱动能力不断加强。我国已培育形成110家智能制造试点示范工厂,聚焦研发、设计、生产、物流等制造过程的重点环节,共同打造241个智能制造优秀场景,且多个场景之间实现了良好地集成协同。比如,地方层面,浙江省建成41家“未来工厂”,以数据驱动生产方式和企业形态变革。江苏省培育198个智能制造示范工厂,推动企业“智改数转”。

三是地方探索开展工业大数据示范区建设。如江苏省打造了7个省级工业大数据应用示范区,聚焦工业大数据开展先行先试。

(三)壮大工业大数据产业的

集群载体创新发展提速

一是产业集聚区加速形成。各地加强产业基地、产业园区、重点发展试验区等产业载体建设,推动大数据产业集聚发展。如河南省培育了5个大数据产业示范园区;江苏省打造了10家省级大数据产业园,并出台两个相关团体标准,指导地方开展园区创建。

二是集群主体的平台化运营能力不断提升。如宁波市依托产业大脑平台,集成政府侧和企业侧应用场景,打通工业经济相关数据,面向产业链上下游提供智能服务。

三是集群跨域协同和网络协作模式加快探索。如广州、佛山、惠州等城市加速终端产线的数字化升级,推动建设覆盖智能家电全产业链和产品全生命周期的规范统一的标准体系,推进跨区域协同。

(四)打造工业大数据生态的

资源要素保障加快完备

一是公共服务持续完善。各地推进建设工业大数据创新中心,发布制造业数字化转型实施指南,推动工业大数据服务生态加快构建。如福建、浙江、苏州等省、市等组建工业大数据研究中心,建设大数据应用试验平台,推动工业大数据创新发展。

二是大数据专业技术人才队伍建设不断加强。各地通过在线培训、基地实训等多元化方式,加强新型数字经济人才培训。如山东省深入开展“万名数字专员进企业”,创新推行CDO(总数据师)制度,逐步实现大型企业全覆盖。

三是产融结合促进工业数据应用扩展。各地加强产融服务,通过多样化资金渠道和支持机制促进工业数据应用创新。如宁波市落地首版次软件综合创新保险,分担创新企业和用户单位风险,加快工业软件及大数据软件等新产品的普及推广,促进工业数据采集应用。

PART 2

准确把握发展工业大数据面临的问题

(一)数据要素汇聚难、流通少、转化慢

制约工业数据要素价值释放

一是数据“过度保护”制约工业数据汇聚。比如,杭州、青岛等城市调研反馈,企业出于对工业数据上云、上链的安全性信任不足,担心关系商业机密和竞争力的数据泄露,不愿推进工业数据网络化汇聚。

二是标准协议不兼容限制工业数据共享流通。工业企业数字化转型进程不一,存在信息化基础不一致、设备兼容性不统一等问题,导致数据贯通不畅、管理不善、应用不足,制约数据共享流通。现有的工业互联网平台通常面向重点行业企业提供专用性平台服务,标准架构互通性不强,技术产品复用能力有限,在工业数据整体的流通应用方面还缺少有力的平台支撑。

三是工业企业能力不足阻碍工业数据价值的高效转化。参评数据管理能力成熟度贯标的工业企业51%处于受管理级(2级),尚未组建相对专业化的数据管理团队,“不会用”数据现象普遍存在。

(二)技术根基不足、产品竞争力不强

影响产业发展壮大

一是底层基础不牢,原创性不足。大数据治理、处理、分析技术不同程度上与国际先进水平存在差距,涉及底层框架、核心代码的自主知识产权把控能力低,开源开放的创新环境匮乏,创新要素无法及时满足产业链、创新链所需。以我为主导的大数据相关开源项目、开源平台对国际高端创新资源的吸引力不足,在贡献数量、活跃性、发版周期等方面与国外相比存在较大差距。

二是自主可控工业技术产品亟待突破。我国工业软件长期被国外厂商垄断,备用昂贵且存在技术掣肘风险,短时期难以形成自主的优势方案供给,先进技术短板等问题较为突出。

(三)应用需求不明、方案适配性弱

阻碍工业数据深层次应用

一是基础设施的建设部署加快推进。各地加大5G、千兆光网等数字基础设施的建设部署,提升工业互联网支撑服务能力。如青岛市建设了工业互联网企业综合服务平台,累计上线特定行业、领域工业互联网平台40个。福州市通过工业互联网平台接入600多家纺织化纤企业。

二是工业数据的采集汇聚不断加强。各地积极实施数据管理能力国家标准,强化数据全生命周期管理和数据资源体系建设。如山东省培育数据共享、数据开放、数据流通、公共服务四类平台共60个,构建工业大数据平台体系。宁波市基于“产业大脑+未来工厂”建设推进产业数据汇聚共享。

三是数据资源的资产化运营加速落地。各地积极培育数据要素市场,打造数据交易中心、数据中介、数据经济人等数据服务新模式。如江苏省、广东省发布首席数据官制度。上海市布局新型数据交易所,推进多层次数据交易流通机制,打造“数商”交易生态。

(四)惯性思维局限、预期效益偏低

掣肘工业大数据创新发展

一是地方发展工业大数据存在惯性思维局限。部分政策制度仍然把创新重点放在“硬环境”打造,即大部分任务举措均围绕以数字基础设施、创新平台、大数据交易中心等为主体的重大项目投资展开;产业协同创新机制、工业数据流通制度、企业营商环境等方面的“软环境”建设不够,面向工业大数据平台化、网络化业态特点和创新需求提供的职能改革和服务优化不足,面对工业数据技术痛点、短板的数字产业发展举措有待进一步创新。

二是企业发展工业大数据面临投入产出预期不足羁绊。工业数据全流程监测通常依赖于生产设备系统的数字化升级改造,企业对该过程中可能导致生产中断的情况缺乏影响评估和专业性支持,存在因数据系统出错影响生产运转甚至引发安全事故的相关顾虑,出于安全生产考虑,部分企业认为升级改造带来的数据系统安全投入远超大数据应用收益。

素材来源:赛迪研究院